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Abstract Mobile robotic mapping is now considered to be a sufficiently mature
field with demonstrated successes in various domains. While there has been much
progress made in the development of computationally efficient and consistent map-
ping schemes, it is still murky at best on how these maps can be evaluated. We
are motivated by the absence of an accepted standard for quantitatively measuring
the performance of robotic mapping systems against user-defined requirements. It
is our belief that the development of standardized methods for quantitatively eval-
uating existing robotic technologies will improve the utility of mobile robots in
already established application areas, such as vacuum cleaning, robot surveillance,
and bomb disposal, but will also enable the proliferation and acceptance of such
technologies in other emerging markets. This Chapter summarizes our preliminary
efforts by bringing together the research community towards addressing this impor-
tant problem which has ramifications not only from a research perspective but also
from consumers’, robot manufacturers’, and developers’ viewpoints.
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1 Introduction

Mobile robots permitting collaborative operations of man and machine present a
new frontier of research with almost limitless possibilities by serving as an indis-
pensable aid in difficult, and unstructured environments. Robots will play an in-
creasingly vital role in assisting humans in a variety of domains ranging from in-
nocuous daily chores around the household to potentially harmful situations. The
use of robots, either tele-operated or autonomous, in dangerous situations can not
only save lives but also can improve productivity (e.g. factory floors) and in some
cases provide solutions which are not possible by humans alone (e.g urban search
and rescue). It is not hard to see that the ability to build a map of the working envi-
ronment is a desirable feature in many domains of interest. For example, in a disaster
scenario concerning extrication of victims, a robot generated map will serve as in
invaluable tool for the first responders.

Not surprisingly, the development of efficient robotic mapping algorithms have
received their due attention from roboticists. A myriad of approaches have been pro-
posed and implemented, some with greater success than others. The capabilities and
limitations of these approaches vary significantly depending not only on the oper-
ational domain, and onboard sensor suite limitations, but also on the requirements
of the end user: Will a 2D map suffice as an approximation of a 3D environment?
Is a metric map really needed or is it enough to have a topological representation
for the intended tasks or do we need a hybrid metric-topological map [36]? It is
thus essential for both the developers and the consumers (probably to a lesser ex-
tent) of robotic systems to understand the performance characteristics of employed
methodologies which will allow them to make an informed decision.

To the authors’ knowledge, there is no accepted standard for quantitatively mea-
suring the performance of robotic mapping systems against user-defined require-
ments; and furthermore, there is no consensus on what objective evaluation proce-
dures need to be followed to deduce the performance of these systems. For instance,
currently, the evaluation of robotic maps is based on qualitative analysis (i.e. visual
inspection). This approach does not allow for better understanding of what errors
specific systems are prone to and what systems meet the needs. It has become com-
mon practice in the literature to compare newly developed mapping algorithms with
former methods by presenting images of generated maps. This procedure turns out
to be suboptimal, particularly when applied to large-scale maps.

The lack of reproducible and repeatable test methods have precluded researchers
working towards a common goal from exchanging and communicating results, inter-
comparing robot performance, and leveraging previous work that could otherwise
avoid duplication and expedite technology transfer. This lack of cohesion in the
community hinders the progress in many domains, such as manufacturing, service,
search, rescue, and security. Providing the research community access to standard-
ized tools, reference data sets, and an open-source library of solutions, researchers
and consumers will be able to evaluate the cost and benefits associated with available
technologies. The development of standardized methods for quantitatively evaluat-
ing existing robotic technologies will not only improve the utility of mobile robots
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in already established application areas, such as vacuum cleaning, robot surveil-
lance, and bomb disposal, but will enable the proliferation and acceptance of such
technologies in other emerging markets.

Some researchers have recognized the need for quantitative evaluation of map-
ping and position estimation schemes and are attempting to address it through sev-
eral programs. For example, the Robotics Data Set Repository (Radish) provides a
collection of standard robotics data sets [3]. The OpenSLAM repository contains
collections of source codes of various SLAM algorithms [2]. While a step in the
right direction, they do not address objective performance evaluation and replication
of algorithms is not straightforward. Emerging standard test methods for emergency
response robots, developed by the National Institute of Standards and Technology
(NIST) and the Department of Homeland Security (DHS), have been developed im-
part to provide the research community with an efficient way to test their algorithms.
These test methods can be proliferated widely to minimize the costs associated with
maintaining functional robots and traveling to one of the permanent arena sites for
validation and practice.

In [29], map quality is assessed using conditional random fields. The assessment
is proposed as an introspective inspection of workspace representations towards
analyzing the reliability/plausibilty of the representation. A single 3D laser map
is segmented into planar patches based on neighboring relations into ’plausible’
and ’suspicious’ using a context-sensitive classification framework. The proposed
framework can be thought of as a qualitative assessment based on quantitative met-
rics. It is not clear how to extend this method to assess and compare quality of two
maps of the same area.

Many researchers have suggested using vision rather than laser rangefinders for
mapping purposes [23, 35, 41]. Though a passive sensor, cameras are an attractive
option due to their low consumption of power, relatively low cost, and ability to pro-
vide large bandwidth of information. In [35], the authors have a developed testbed
infrastructure as a vision SLAM benchmark using synchronized inertial measure-
ment unit, GPS and stereo images in an outdoor setting. The proposed benchmark
may provide a mechanism for comparing two maps generated by using the data col-
lected via the proposed infrastructure and geographically referenced aerial images
as ground truth. While feasible in some cases, the assumption of ground truth is, in
general, an overly restrictive assumption.

The RoboCup Rescue competitions have proved to be a good forum to evaluate
task-based performance of robots. An image similarity metric and a cross entropy
metric are outlined in [21] to measure the quality of occupancy grid maps. The
metric gives an indication of distortion of the map with respect to a ground truth
map in the presence of noise and pose errors. This metric is embedded in the Jacobs
Map Analysis Toolkit [1] and has been tested for comparing maps in the RoboCup
context.

While contributions by individual researchers are important steps in the right di-
rection to overcome technological barriers to robotic mapping, a concerted effort
among all interested parties is crucial. The primary focus of our efforts is to thus
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bring together researchers, consumers, and vendors to define objective methodolo-
gies for quantitatively evaluating robot-generated maps [34, 8].

Standard test methods are vital in establishing a confident connection regarding
the expectations and performance objectives of robotic technologies between devel-
opers and consumers. They consist of well-defined testing apparatuses, procedures,
and objective evaluation methodologies that isolate particular aspects of a system
in known testing conditions [4]. This provides developers with a basis for under-
standing the objective performance of a system and allows consumers to confidently
select systems that will meet their requirements.

Fig. 1 The standard test method developmental cycle used by NIST and DHS.

In order to ensure the integrity of the test methods, it is essential to use a devel-
opmental cycle, shown in Figure 1, that continuously reassesses the validity of the
test methods. This process starts with a comprehensive analysis of the application
domain to identify requirements with associated metrics, thresholds of performance,
and best-case performance objectives. This analysis provides the basis for develop-
ing test methods, procedures, and testing scenarios that are intentionally abstract so
as to be repeatable across a statistically significant set of trials and reproducible by
other interest parties.

The remainder of this chapter is dedicated to the development of standard test
methods and techiques for evaluating robotic mapping using the cycle described
above. Section 2 provides a brief description of the emerging test apparatuses used
to challenge robotic mapping in specific ways. Section 3 develops a theoretical ap-
proach, using the Cramer-Rao Bound (CRB), to assess the objective performance
and thresholds of pose and mapping estimates. The subsequent Sections 4 and 5 out-
line two experimental techniques used to quantitatively assess the quality of robot-
generated maps. Section 6 provides conclusions and continuing research.
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2 Developing Test Scenarios for Robotic Mapping

The performance of any given robotic mapping system is largely dependent on its
ability to reliably accomplish two fundamental tasks. First is the ability of the sys-
tem to make accurate measurements of its surrounding environment. Second is the
ability of the system to reliably determine valid correspondences between observa-
tions, i.e. associating an object in one observation with its counterpart in another.
The type of environment and the conditions found in that environment strongly
influence the ability of the system to accomplish either task. Furthermore, subtle
differences in relatively similar environments may have very different effects on the
overall performance of the system.

As noted eariler in Section 1, the evaluation of robot-generated maps is often
based on a qualitative approach that does not take into account how specific environ-
mental conditions impact the performance of the system. While this type of analysis
provides some indication of the overall performance, it does not allow researchers
to understand what errors a specific system is prone to, how these errors impact the
overall performance of that system, and how performance of that system compares
with competing approaches. When developing standard test methods for evaluating
robot-generated maps, it is important to develop repeatable and reproducible testing
scenarios that isolate potential failure conditions in a controlled environment.

The remainder of this section summarizes a suite of test apparatuses designed
to classify the performance of robotic mapping systems over a range of application
requirments. With each test apparatus focused on challenging the system with vary-
ing levels of environmental complexities, this suite is intended to provide a com-
prehensive evaluation that will serve as the baseline for comparison and will help
developers refine the capabilities of their system (or address limitations). Section 2.1
provides a brief discription of the process used to develop the test apparatuses in this
suite. Sections 2.1.1, 2.1.2, and 2.1.3, introduces the resulting prototype apparatuses
currenly used to characterize mapping systems.

2.1 Performance Singularity Identification and Testing

Identifying performance singularities, or the point where the mapping system fails
to be well-behaved, is essential for understanding the impact of the environment on
the overall performance of the mapping system and what environmental conditions
are problematic for robotic mapping systems in general. Performance singularity
identification and testing [37, 38] defines a two-pronged approach by which one
can systematically evaluate the impact of environmental conditions(that may con-
tribute to the occurrence of performance singularities) and analyze the impact of
these singularities on the overall performance of the system.

The first step in this approach is to evaluate the performance at the system level
to identify divergences in the performance of the mapping system. Using ground
truth information about the location of the robot and the surrounding environment,
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the performance evaluation step facilitates the decomposition of the errors arising
in the pose estimate. This enables the discover of irregularities and helps identify
environmental situations where a performance singularity has occurred.

The second step in this approach is to analyze performance of a mapping sys-
tem at the algorithmic level to gain insight into the cause and repercussions of the
performance singularity previously identified. Performance analysis takes advan-
tage of the ground truth to measure the error in the pose estimate at each discrete
observations. This produces a convergence profile elucidates the convergence char-
acteristics, such as the stability of the pose estimate.

2.1.1 The Maze: Scenarios with Distinct Features

Fig. 2 The Maze is a testing scenario that limits complexities in the environment to evaluate the
objective performance of robotic mapping systems. The top images show the overall size to be 10
meters by 15 meters. The bottom left image shows the continuous 15◦pitch and roll ramp flooring
foudn throughout the maze. The bottom right image shows additional mapping features, such as
concave and convex surfaces.

The Random Maze apparatus has distinct features, which provide the best-case
scenario, where mapping systems should perform optimally. As seen in Figure 2,
this apparatus contains a closed set of distinct mapping features and vertical walls
that produces unique observations. This enables mapping systems to associate fea-
tures, increasing the likelihood of determining valid correspondences. Perpendicular
surfaces, which allow for more accurate measurements of the surrounding environ-
ment, appear in almost every scan. Limiting the environmental complexities allows
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developers to tune their systems and establishes baseline a for comparison. The
modularity of the apparatus enables the randomization of the maze configurations
for repetitive testing. Common building materials makes it a low-cost and easy to
replicate.

2.1.2 The Tube Maze: Scenarios with Occluded Features

Fig. 3 The Tube Maze, which also has continuous 15◦pitch and roll ramp flooring, is designed to
test the ability of the system to reliably determine valid correspondences.

The Tube Maze apparatus challenges the mapping systems ability to determine
valid correspondences. As seen in Figure 3, this apparatus also contains a closed
set of distinct features where nearby features periodically occlude more distant fea-
tures as the robot moves through the environment. This produces a situation where
consecutive observations may not contain the same set of features, increasing the
likelihood of correspondence errors. However, the nearby features, not occluded,
enable the system to make accurate measurements of the immediate vacinity, help-
ing the system avoid catastrophic failures. This occurs frequently in unstructured
environments and is a key component to a successful mapping system. Similarly,
the modularity of the apparatus and common building materials provide a simple
way to validate successful mapping.

2.1.3 The Tunnel: Scenarios with Minimal Features

The Featureless Tunnel apparatus implements the degenerative case for mapping al-
gorithms. As shown in Figure 4, this apparatus presents a symmetric and featureless
environment to the mapping system, inhibiting the system’s ability to make accurate
measurements of its environments and determine valid correspondences. The only
distinct feature in the apparatus is the turn where the far wall is perpendicular to the
robot. The lack of distinct features increases the potential for catastrophic errors by
preventing the convergence of the pose estimate in the mapping system. While this
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Fig. 4 The Featureless Tunnel apparatus challenges the aspects of robotic mapping systems that
require correspondences to estimate the robot’s pose. The apparatus is 15 meters with a single turn,
15◦roll ramp flooring, and black felt covered interior walls.

situation does not occur commonly (except in culverts, sewers, and tunnels), this
testing apparatus is essential to understanding how the system fails.

3 Assessing Objective Performance Using Theoritical Analysis

The test methods as developed provide a basis for evaluation of a range of applica-
tion requirements with associated metrics, thresholds of performance, and best-case
performance objectives. Theoretical analysis of mapping systems assists can pro-
vide insight into the range of performance in application domains and how these
systems can be improved.

We use the following notation. Let xk ∈ SE(2) be the robot pose at time k; let δ k ∈
SE(2) be the incremental motion of the robot, such that xk+1 = xk ⊕ δ k, where ⊕
is the pose composition operator (group operation on SE(2)). Let w represent the
“world” or “map”. Let yk be the sensor readings. The sensor model can be specified
either in a functional form such as yk = f (xk,w) + εk, where εk is a noise term,
or alternatively using the distribution p(yk|xk,w). With this notation, we formalize
localization as the problem of estimating xk given the observations y1:k and a known
map w. We call pose-tracking the problem of recovering the robot displacements δ k
from the sensor readings, without knowing the map. Pose tracking using range scans
is commonly called scan matching. We call mapping the problem of recovering w
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given known poses. Finally, SLAM is the problem of recovering both poses and
map at the same time. This classification is useful in this particular analysis; but,
in practice, distinctions are blurred between these problems. For example, some
algorithms such as ICP are applicable to both localization and pose tracking, and
a complete solution may decompose the SLAM problem in smaller subproblems
involving pose-tracking, mapping, and (re)localization.

Industrial deployment of localization/SLAM algorithms implies matching the al-
gorithm properties to the operational requirements. Computational properties, such
as speed and memory consumption, are easy to define and measure directly. Statis-
tical properties make sense for most algorithms that work in a probabilistic formu-
lation of the problem. Such properties are the accuracy (estimate covariance), the
presence of a bias, the consistency (whether the algorithm has a good estimate of
its actual accuracy). These properties are easy to define mathematically, but might
be hard to measure in practice because a ground truth is needed. Equally important
are the robustness properties, which refer to the ability for the algorithm to work
even if the assumptions on which it relies are slightly violated. For example, a lo-
calization algorithm should not fail completely if the provided map is only slightly
different than the actual environment. Likewise, it should not fail if the sensor has a
covariance slightly larger than the assumed one. The robustness properties are hard
to define analytically, because by definition they refer to unknown violations of the
assumptions. Finally, the output of some algorithms, such as environment maps,
might be used by both machines and humans, but this “user-friendliness” cannot be
be defined mathematically.

All these desirable properties are sometimes contrasting. For example, speed ver-
sus accuracy is an obvious trade-off in many algorithms. Other typical trade-offs
include robustness versus accuracy (for example, this appears in choosing the per-
centage of measurements to discard as outliers) and generality versus accuracy (an
algorithm which makes more assumptions about the environment can be more pre-
cise than one that works in more situations).

There are essentially two ways to verify these properties: either using bench-
marks, or using theoretical analysis. These two are complementary activities: a the-
oretical analysis can be done only on some kind of idealized model of the system
and the algorithm; the benchmarks can verify whether the assumptions are verified,
for the actual implementation in the actual environment. Conversely, benchmarks
are incomplete without analysis, because they do not explain why the algorithm be-
haves in a certain way, and whether and how the algorithm can be improved.

3.1 The case for statistical bounds

In practice, it might be unfeasible to prove analytically that a particular localiza-
tion/SLAM algorithm has one of the above mentioned properties. In estimation the-
ory, there are a number of ready-made results for the canonical estimators, such as
the maximum-likelihood estimator, regarding their accuracy and consistency. How-
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ever, this kind of results are not easily transferred to the actual algorithms, because
of the ad-hoc approximations that are necessary in the implementations.

For example, in the Bayesian framework, the solution to the the filtering problem
is given by a recursive formula which has a closed form. Most SLAM papers start
with this uncomputable formula, and start simplifying it using various assumptions,
until an approximation which can be computed efficiently is obtained. The problem
is that, once the symbol “'” is used, one loses any guarantee about the properties of
the resulting algorithm. Another canonical example of theoretically sound, but hard
to analyze, estimators are particle filters. The only strong results regard the asymp-
totic behavior as the number of particles goes to infinity, but nothing is guaranteed
for a finite computation [11]. The answer to the question of how many particles does
one actually need is usually very fuzzy [12]. These problems are specific to “dense”
algorithms. In the “discrete” case, for Extended-Kalman Filter-based methods, it is
easier to do theoretical analysis because the complexity of actual sensors has been
abstracted away into bearing/range observations of landmarks: hence we know that
the EKF is inconsistent, where the inconsistency originates, and what to do about
it [13, 20, 18].

Because an explicit white-box analysis of a localization/SLAM algorithm might
be unfeasible, a possible first step is to investigate the problem itself, for example
by considering the statistical bounds to the problem.

The theory of statistical bounds is well developed and offers many tools [40].
The Cramr-Rao Bound (CRB) is a classic one which is easy to derive and to use.
In the nonlinear case with additive gaussian noise (y = f(x) + ε), one defines the
Fisher Information Matrix (FIM) as I [x] = ∂ f

∂x
T
Σ−1 ∂ f

∂x , with Σ being the covariance
of the noise. Then the CRB establishes that, for any unbiased estimator, cov[x̂] ≥
(I [x])−1; if the estimator is biased, cov[x̂] ≥ [

I+ d
dx bx̂(x)

]
(I [x])−1[I+ d

dx bx̂(x)
]T
,

where bx̂ is the bias of the estimator. In general, the CRB is not tight, except is
special cases, such as when f is linear; the CRB is approximately tight at high signal-
to-noise ratios.

The CRB is an useful tool with many uses. It provides a lower bound for the
accuracy that is a baseline for comparing the actual experimental results. It allows to
verify the realism of accuracy claims, and the proper execution of experiments. After
it has been proved to be tight, it can also be used to predict the actual covariance.

Nevertheless, it is worth pointing out some intrinsic limitations of this kind of
analysis. This theory applies only when localization is modelled probabilistically,
and it only models the effect of stochasticity in the readings, which is only one of
the many sources of error in the algorithms (others are, e.g., convergence to local
minima). Moreover, this theory only gives negative results; establishing positive
results of guaranteed accuracy must still be done on a case-by-case basis.



Quantitative Assessment of Robot-generated Maps 11

3.2 The CRB for range-finder localization

We define localization as estimating the pose given a perfect map and a range scan.
This case has been considered in the paper [9], from which we recall the main
results. Assume the pose of the robot is x = (t,θ), and the output of the range finder
is {ρ̃i}n

i=1 where ρ̃i is the i-th ray along direction ϕi. The FIM is a 3×3 symmetric
semidefinite positive matrix which can be computed as follows:

I [x] =
n

∑
i=1

1
σ2

i cos2 βi

[
v(αi)v(αi)Tri sin(βi)v(αi)

∗ r2
i sin2 (βi)

]
(1)

In this expression, v(αi) is the versor corresponding to the surface normal direction
αi, βi = αi− (θ + ϕi) is the incidence angle, and ri is the distance to the obstacle.
The FIM depends both on the environment, and the particular pose of the robot in
the environment: there are parts of the environment where localization is easier than
in others.

By computing the CRB as (I [x])−1, one obtains the achievable accuracy in a
particular environment and pose. Experiments show that the CRB is approximately
strict; in localization, the high signal-to-noise condition corresponds to having the
sensor standard deviation σ negligible with respect to the size of the environment,
which is usually the case. Given the FIM for “one shot” localization, the covari-
ance over a trajectory can be evaluated by propagating the CRB through the system
dynamics, according to a standard procedure [40].

The FIM can be used also in a more qualitative way to study the observability of
the problem: the FIM drops rank in under-constrained situations (corridor or circular
environment).

Thus it is possible to do a fairly complete characterization of localization. The
reason is that, being a finite dimensional problem, all is needed is a straightforward
use of the basic tools of statistics. However, this cannot so easily extended to pose
tracking.

3.3 The CRB for one-shot pose tracking

We now consider “one-shot” pose tracking, in which we estimate the robot dis-
placement given two sensor readings. Let x1 ∈ SE(2) be the first pose, δ ∈ SE(2)
be the robot motion, and therefore x2 = x1 ⊕ δ ∈ SE(2) be the second pose. The
sensor model reads y = f(x,w)+ ε , with w now an unknown map. Because the map
is unknown, pose-tracking is qualitatively different from localization, and concep-
tually closer to full SLAM. Moreover, the problem is ill-posed if a prior for the
map is not specified. Because of the unknown map, using the CRB is inconvenient,
as one should: 1) choose a particular (differentiable) parametrization of w; 2) de-



12 C. Scrapper, R. Madhavan, R. Lakaemper, A. Censi, A. Godil, A. Wagan, and A. Jacoff

fine the prior for w; 3) use a variant of the CRB such as the Bayesian Cramer-Rao
bound [40].

However, the paper [10] shows that there is a “trick” one can use to obtain accu-
racy bounds without considering the prior distribution of the map. The result is that
a lower bound for the FIM of δ is:

I [δ ]≤
(
(I [x](x1))

−1 +(I [x](x2))
−1

)−1
(2)

In this expression, I [x](x1) and I [x](x2) is the FIM for localization of x, evaluated
at the poses x = x1 and x = x2 respectively. This bound is significant because it de-
pends neither on the representation, nor on the prior used for the map. Therefore, it
allows to reduce the analysis of pose-tracking, an infinite-dimensional problem that
involves both w and x, to the analysis of localization, a finite dimensional problem
that involves only x.

The bound in (2) can be very optimistic, but it can also be shown that this is also
the “best possible” bound, in the sense that there is always a certain prior for the
map such that equation (2) holds with equality. Moreover, it can be shown that (5)
holds with equality in the limit δ → 0. This means that, for small steps, the prior for
the map is unimportant; the data itself is the model.

3.4 The CRB for pose tracking over a trajectory

Let us consider now the problem of evaluating the accuracy of pose tracking over
a trajectory. It might be counterintuitive, but it is not necessarily true that the er-
ror of pose tracking grows linearly with the number of steps. The reason is that
scans are matched pairwise: scan yn is used for estimating both δ n−1 = xnª xn−1
and δ n = xn+1ª xn. The errors on δ n and δ n−1 are now correlated, and because of
this correlation, the covariance of the cumulative estimate δ 1⊕·· ·⊕ δ n is not just
the sum of the uncertainties anymore. This effect must be taken into account when
propagating the uncertainty [32], and it is likely to be an important effect to consider
when deriving accuracy bounds [31].

As it turns out, for relative sensors this is actually a positive effect: errors tend to
cancel out. A one-dimensional toy example can show this point. Suppose the robot
is moving on a line; x∈R, and there is a single wall at point w∈R. The range-finder
then measures a single reading y = w− x which is the distance to the wall. Assume
now that there are n steps going from pose x1 to xn+1, with n + 1 range finders
readings defined as: yi = (w− xi)+ εi. Assuming we are doing pose tracking, we
would estimate first the incremental displacement, by computing

δ i = yi+1− yi (3)

Then, we would combine the incremental estimates as to obtain the cumulative es-
timate
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δ 1:n = δ 1 +δ 2 + · · ·+δ n (4)

What is the covariance of δ 1:n? A wrong answer would be the following. From (3),
it is clear that cov[δ i] = 2σ2 if σ2 is the covariance of the single reading. The
naive way would be to sum covariances and obtain cov[δ 1:n] = 2nσ2. But this is not
correct because the δ i are correlated. In fact, equation (4) can be rewritten as: δ 1:n =
δ 1 +δ 2 + · · ·+δ n = (y2− y1)+(y3− y2)+ · · ·+(yn+1− yn) = yn+1− yn. Because
the ys cancel out, the errors compensate exactly, and one then can conclude that
cov[δ 1:n] = 2σ 2, which is independent of the number of steps. This is an extreme
example which corresponds to a trivial system. For nonlinear systems, the errors
will not cancel perfectly. Still, this example shows that, in general, the bound over a
trajectory is

cov(δ 1⊕·· ·⊕δ n)≥ (I [x](x1))
−1 +(I [x](xn+1))

−1 (5)

This is, however, very optimistic for actual scan matching; but it is the best one can
do without considering the map.

3.5 The CRB for mapping and SLAM

We turn now to the problem of mapping (estimating the map given the readings of
known poses) and SLAM (where also the poses are unknown). Establishing accu-
racy bounds on the accuracy in estimating the map is more laborious.

The dominant phenomenon is that asking what is the achievable accuracy of the
map is an ill-posed question if the prior of the map distributions is not specified.
Consider the following toy example. Suppose that the world is allowed to have only
two shapes: triangle (4) and circle (©), and that they are equally likely. Formally,
we set the world set W = {4,©} and the prior p(w =©) = p(w =4) = 0.5. A
decent sensor can distinguish exactly between the circle and the triangle. Therefore,
the error of mapping is zero (or conversely, the accuracy is infinite): once one de-
cides which one of the two shapes is correct, the reconstruction is perfect. The same
holds even in the case where W is a much larger set, but 4,© are the only objects
having non-zero prior. Therefore, the achievable accuracy depends arbitrarily on the
prior.

Another example is the following. An “unstructured” environment has many
more degrees of freedom than a “structured” one, which, for the most part, could be
described even by a finite-dimensional representation. Therefore, it can be seen intu-
itively that, if the same sensor is used in both kinds of environments, the achievable
accuracy in reconstructing the map is higher in the structured environment. How-
ever, to quantify this intuition, one needs to: 1) formally define the set S of structured
environments; 2) formally define the set U of unstructured environments; 3) embed
both in a larger set W, for example the set of all closed curves; 4) restate the struc-
tured/unstructured hypotheses by defining appropriate structured/unstructured pri-
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ors on W; 5) apply one of the Bayesian bounds to derive that, yes, indeed, mapping
is easier in a structured environment.

This formal reasoning about shapes has not been used in SLAM research yet,
while it is used in other fields such as computer vision and stochastic geometry. An
“intrinsic” theory of shape can be used to discuss the properties of shapes and shape
distributions independently of their representation; see, e.g., the classical work [27]
for points distributions and for curves [30, 24]. Such an approach is necessary for
establishing meaningful bounds on the accuracy of mapping and SLAM.

4 Evaluating Local Metric Consistency of Robot-Generated
Maps Using FFS and Virtual Scans

In this section, we discuss how the integration of low level spatial cognition pro-
cesses (LLSC) and mid level spatial cognition processes (MLSC) can help to im-
prove the performance of robot mapping, and how a LLSC/MLC system can be used
for map evaluation.

In robot cognition, MLSC processes infer the presence of mid level features from
low level data based on regional properties of the data. In our example case, we
detect the presence of simple mid level objects, i.e. line segments and rectangles.
The MLSC processes model world knowledge, or assumptions about the environ-
ment. The example assumes the presence of (collapsed) walls and other man made
structures. If possible wall-like elements or elements resembling rectangular struc-
tures are detected, our system generates the most likely ideal model as a hypothesis,
called ’Virtual Scan’. Virtual Scans are generated from the ideal, expected model in
the same data format as the raw sensor data, hence Virtual Scans are added to the
original scan data indistinguishably for the low level alignment process; the align-
ment is therefore performed on an augmented data set.

In robot cognition, LLSC processes usually describe feature extraction processes
based on local properties like spatial proximity. An example is metric inference on
data points (laser scanner reflection points). In our system laser scans (virtual or
real) are aligned to a global map using mainly features of local proximity using the
LLSC core process of ’Force Field Simulation’ (FFS). FFS was recently introduced
to robotics [26].

In FFS, each data point can be assigned a weight, or value of certainty. It also
does not make a hard, but a soft decision about the data correspondences as a basis
for the alignment. This is achieved by computation of a correspondence probability
to multiple neighboring points, based on weight, distance and direction of underly-
ing linear structures. Mainly these features makes FFS a natural choice over its main
competitor, ICP [7, 33], for the combination with Virtual Scans (however, the gen-
eral idea of Virtual Scans is applicable to both approaches). The weight parameter
can be utilized to indicate the strength of hypotheses, represented by the weight of
virtual data.
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FFS is an iterative alignment algorithm. The two levels (LLSC: data alignment
by FFS, MLSC: data augmentation) are connected by a feedback structure, which is
repeated in each iteration:

• The FFS-low-level-instances pre-process the data. They find correspondences
based on low level features. The low level processing builds a preliminary version
of the global map, which assists the mid-level feature detection

• The mid level cognition module analyzes the preliminary global map, detects
possible mid level objects and models ideal hypothetical sources. These can be
seen as suggestions, fed back into the low level system by Virtual Scans. The
low level system in turn adjusts its processing for re-evaluation by the mid level
systems.

Fig. 5 LLSC/MLSC feedback. The LLSC module works on the union of real scans and the Virtual
Scan. The MLSC module in turn re-creates a new Virtual Scan based on the result of the LLSC
module.

In such a system, MLSC processes steer LLSC processes introducing higher knowl-
edge to enable spatial inferences the LLSC system is not able to draw by itself. How-
ever, the MLSC system also needs assistance of the LLSC for two reasons: MLSC
systems concentrate on higher information which needs LLSC pre-processed data
(e.g. a set of collinear points is passed to the MLSC as a single line segment). But
also LLSC processes have to support the suggestions stated by the MLSC. Since
MLSC introduces higher knowledge, it is dangerous to focus on spatial mid level
inferences too early. Feedback with the LLSC system enables more careful evalua-
tion of plausibility.

The potential of MLSC has been largely unexplored in robotics, since recent re-
search mainly addressed LLSC systems. They show an astonishing performance.
But although the work on sophisticated statistical and geometrical models like ex-
tended Kalman Filters (EKF),e.g. [19], Particle Filters [15] and ICP (Iterative Clos-
est Point) [7, 33] utilized in mapping approaches show impressive results, their lim-
its are clearly visible. However, having these well-engineered low level systems at
hand, it is natural to connect them to MLSC processes to mutually assist each other.
In [6], the importance of ’Mental Imagery’ in (Spatial) Cognition is emphasized and
basic requirements of modeling are stated. Mental Images invent or recreate experi-
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ences resemble actually perceived events or objects. This is closely related to Virtual
Scans.

4.1 Scan Alignment using Force Field Simulation

We assume the scans to be roughly pre-aligned. FFS alignment, in detail described
in [26], is able to iteratively refine such an alignment based on the scan data only.
In FFS, each single scan is seen as a non-deformable entity, a ’rigid body’. In each
iteration, a translation and rotation is computed for each single scan simultaneously.
This process minimizes a target function, the ’point potential’, which is defined on
the set of all data points (real and Virtual Scans: FFS can not distinguish). FFS
solves the alignment problem as optimization problem utilizing a gradient descent
approach motivated by simulation of dynamics of rigid bodies (the scans) in grav-
itational fields, but ”replaces laws of physics with constraints derived from human
perception” [26]. The gravitational field is based on a correspondence function be-
tween all pairs of data points, the ’force’ function. FFS minimizes the overlaying
potential function induced by the force and converges towards a local minimum
of the potential, representing a locally optimal transformation of scans. The force
function is designed in a manner that a low potential corresponds to a visually good
appearance of the global map. As scans are moved according to the laws of motion
of rigid bodies in a force field, single scans are not deformed.

4.2 Augmenting Data using Virtual Scans

The analysis module detects line segments and rectangles in each iteration of the
FFS alignment. Both detection steps work on the entire point set of the current global
map, i.e. the union of all points of the real scans. A preprocessing step transforms
the point-based data to line segments. Similar segments are merged. This simplified
data set allows for fast detection of lines and rectangles using techniques based on
[17] and [25] respectively.

A Virtual Scan is a set of virtual laser scan points, superimposed over the entire
area of the global map. The detected line segments and rectangles are ’plotted’ into
the Virtual Scans, i.e. they are represented by point sets as if they would be detected
by a laser scanner.

An important feature of a Virtual Scan is, that each point in the Virtual Scan is
assigned a weight, being the strength of hypothesis of the virtual structure it repre-
sents. Figure 6 shows an example. This data set consists of 60 single laser scans.
The scans resemble the situation of an indoors disaster scenery, scanned by multiple
robots. We used an initial rough guess of robot poses as global map for two different
runs of FFS, once with Virtual Scans, once without. The experiment was performed
to demonstrate the increase in alignment performance using Virtual Scans. The in-
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Fig. 6 Virtual Scans in an early stage of FFS. a) global map b) the Virtual Scan consisting of points
representing detected lines and rectangles c) superimposition of real data and Virtual Scan. This is
the data used in the next FFS iteration.

Fig. 7 Alignment of NIST data set (initial alignment see fig. 6). Top left: after 10 iterations with
detected line and rectangular objects plotted into the Virtual Scan (red). Top right: Final result using
Virtual Scans, after 100 iterations. MLSC objects are not shown for clarity of display. Compare to
Bottom Right: final result of alignment without Virtual Scans. Encircled areas show examples of
improvement using Virtual Scans. Bottom left: The center rectangle could only be aligned correctly
using MLSC information.

crease in performance was evaluated by visual inspection, since for this data set no
ground truth data is available. Comparing the final global maps of both runs, the
utilization of Virtual Scans leads to distinct improvement in overall appearance and
mapping details, see fig.7. Overall, the map is more ’straight’ (compare e.g. the top
wall), since the detection of globally present linear structures (top and left wall in
fig.7) adjusts all participating single segments to be collinear. These corrections ad-
vance into the entire structure. More objectively, the improvements can be seen in
certain details, the most distinct encircled in fig.7, bottom right. There especially
the rectangle in the center of the global map is an excellent example for a situa-
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tion where correct alignment is not achievable with low level knowledge only. Only
the suggested rectangle from the Virtual Scan (see fig.7, top left) can force the low
level process to transform the scan correctly. Without the assumed rectangle the low
level optimization process necessarily tried to superimpose 2 parallel sides of the
rectangle to falsely appear as one (fig.7,bottom right).

Comparison of fig.7, top left, and fig.6 shows the effect of feedback between the
core FFS alignment process and the map analysis to create Virtual Scans. Figure 6
shows iteration 5 of the same experiment. Objects and object locations differ be-
tween the 2 Virtual Scans. Fig. 7 has discarded some hypotheses (objects) present in
fig. 6, e.g. some of the rectangles. Other hypotheses are modified, e.g. the top wall
is adjusted.

4.3 Map Evaluation using Virtual Scans

The idea of Virtual Scans can be used to evaluate the quality of mapping results in
a straightforward way. This evaluation assumes the presence of a ground truth map
G. To evaluate a mapping result R, it is fed into the FFS/VS system. G is used as
Virtual Scan. Therefore, instead of creating a Virtual Scan, the ground truth data G
is inserted, see fig.8 left. Assigning a high confidence weight to G will force the
evaluated data R to align to the ground truth Virtual Scan. The alignment energy for
this process is directly readable from the FFS module. The energy is a measure for
visual closeness, see fig.8 right.

This evaluation procedure is adjustable to local ground truth data, since the ad-
justment energy in regions of interest can be emphasized. The energy computed in
FFS is a symmetric measure, i.e. aligning R to G leads to the same measure as align-
ing G to R. This can be used for ’inverse evaluation’ (evaluating the ground truth G
with R) in the following manner: G can be manually split into local regions of in-
terest (room, hallway, etc.). These regions are represented as single scans and used
as input for the FFS system, while the map R is used as Virtual Scan. Such a setting
has huge advantages, since, on one hand, it is more independent of the actual data
representation of R. On the other hand, and more important, the manual split of G
defines regions which can be assigned independent evaluation scores.

Note that in the Virtual Scan evaluation approach, ground truth data representa-
tion is not limited to physical objects, but can consist of geometric properties (e.g.
evaluate how well map represents lines/rectangles). In this case, the original Virtual
Scan approach is utilized, instead of insertion. The properties are then defined by
means of MLSC-analysis modules. This is especially interesting if no ground truth
data is available.
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Fig. 8 Evaluation using FFS/VS. Left: Instead of creating a Virtual Scan, ground truth is used.
Right: the alignment energy gained from FFS is a measure for visual fitness of the evaluated global
map.

5 Evaluating Global Metric Consistency of Robot-Generated
Maps

Fig. 9 Ground truth map.

Assessing the global consistency of robot generated maps is one of the practical
ways to assess the capability of a robot’s understanding of its surrounding environ-
ment. Global map quality is one of the quantitative measures which can be helpful
in determining which robots will perform better in the field. One important fac-
tor which we want to measure in the global map quality for robot is the structural
details in the map, so although there might be some other noise in the map it is
assumed that any map is accurate if it thoroughly represents all the important struc-
ture features when compared to the ground truth map (Figure 5). We are proposing a
novel method to assess the map quality based on three separate algorithms, each cor-
responding to different type of features found in the map. These are Harris Corner
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Detector, Hough Transforms and Scale Invariant Feature transform. These measures
will gives us three values which can be used to assess the quality of the map.

5.1 Harris-based Algorithm

Our first algorithm is defined on the principals of closest point matching. Let us
assume we are given two images to compare named X and Y . To compare these
images we need to find interest points in these images. These images are binary so
we have limited choice in selecting the interest point algorithms. Most of the interest
point detectors work on gray scale or color images. The interest points should be
useful with enough detail so that they can be compared with points in other image.

Corner detectors are effective in case we have binary images so we have chosen
Harris corner detector [16, 39]. This algorithm is very effective in capturing corners
and is effectively invariant to rotation, scale, illumination variation and image noise.
This is a desirable metric which will enable us to deal with minor noise, rotation
and scale problems in the map.

After calculating the interest point using the Harris corner detector, we use the
closest point matching process (described in Section 5.4 to generate the vector maps
which are later used for calculating the quality metric (described in Section ??.
To generate the vector map (described in Sectio 5.5 we find the corners which are
closest to the point under consideration and then use that point in map and find its
closest point in the ground truth and eliminate those points from both maps with
increase in the value for true points matched counter for the map quality.

5.2 Hough-based Algorithm

To account for the structural detail we have used Hough transform [22, 5] to transfer
the map from Euclidean space to Hough space. This has the benefit of identifying
lines in the image. These lines are compared according to the position of lines as
points in the Hough space. Hough space is created by exchanging the Euclidean
coordinates with the parameterized values form the parametric form of the equation
of the line.

rθ = x× cosθ + y× sinθ (6)

This helps in identifying lines easily as in the Hough space the points with large
values will be highly likely to represent the lines.

This same process can be repeated to generate the space for circle and other
geometrical objects detection. A variation of the Hough transform which is known
as the generalized Hough transform, can be used to detect different type of arbitrary
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shapes in the image. This can be used to detect lines, squares (e.g. rooms), circle
(e.g. roundabouts) in the map which will be a more generalized way to calculate the
map quality.

After detection of these features the matching features can be located in the
ground truth map and compared for the map quality as described in the last sec-
tion.

5.3 Scale Invariant Feature Transform

DOG(I) = (Gm× I)− (Gn× I) (7)

Scale Invariant Feature Transform (SIFT) was introduced by the David Lowe
in [28]. Since then SIFT based localized feature have gained prominence among
researchers due to there invariability to rotation scale and even dynamic changes.
To assess the map quality we have proposed an algorithm based the SIFT. SIFT
feature are calculated from extrema detection by finding the extrema points from
difference of Gaussian images as shown in Equation 7, where the Gm and Gn repre-
sent the Gaussian filters at multiple scales and I is the original image. These points
are further processed to find out the stable point under various conditions like edge
response and low contrast point elimination.

Fig. 10 Scale Invariant Feature transform is used to extract features. The figure on the left shows
the results of SIFT on the ground truth map and the figure on the right shows the results of SIFT
on a robot-generated map.

SIFT points detection is the first part of the process, after detection usually a
descriptor is calculated and stored for each point so that it can be used to com-
pare point from different images. The length of the SIFT detector is equal to 128
elements, which is basically the directional histogram of the local region.

For our algorithm we have used the following procedure:

1. First the entropy [14] of the image is calculated so that important regions with
high entropy are identified. As our maps are binary images it is necessary to
convert them into multiple scales with more information so that useful features
are calculated.
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2. This image is passed on to the SIFT for feature detection and descriptor calcula-
tion, see Figure 10 for an example of SIFT features.

5.4 Closest Point Matching

Closest point matching is performed by finding the closest point to the correspond-
ing interest points in one image to another. Each point in the ground truth is mapped
in a one to one fashion between the ground truth image and the target image. To
keep points from matching to a point which is extremely far, the matching is per-
formed only for the points which exist below a specified threshold. So it generates
a displacement map for each point from one image to another image. The obvious
benefit is the localized identification of the object interest points.

The closest point match can be described by Equation 8.

Match = Dis(FV (P(x,y)))−FV (Pθ (x,y))) (8)

Where Equation 8 describes that the match is the point which is equivalent to
the point in one map to the corresponding region in another map under an specified
threshold, where FV is the feature vector of the P(x,y) and Dis is the distance be-
tween two corresponding feature vectors. Only in the case of the SIFT features the
comparing criteria is based on the calculated descriptors

5.5 Vectorial Space

Fig. 11 The figure on the left shows the displacment of closest points in ground truth map. The
figure on the right shows the displacment of the points in robot-generated map. points of interest
indentified on the robot-generated map.

The displacement or vector map calculated in the last step provides much more
information regarding the kind of distortion which appeared in the image. This way
this vector map is a localized distortion map in the image. This can be done in
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both directions to identify the missing features which were not captured and extra
features which don’t really exist. The Figure 11 shows the displacement of closest
points in ground truth while the vectorial space is shown in Figure 11 for the test
image.

5.6 Quality Measure

Fig. 12 Maps used for the comparison.

The map quality measure is calculated using the ratio between the set of features.
The map quality can be defined mathematically as
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Fig. 13 Quality values obtained with different algorithms for different maps.

q =
RMF
GT F

(9)

where RMF are the number of valid feature points found in the robot generated
map while GT F are the number of feature points in the ground truth map. The
map quality obtained from the set of test images (as show in Figure 12) is shown
Figure 13.

Image quality assessment is difficult [42, 43] because for each case there can
be different criteria to define the quality. For these robot generated maps the most
important quality measure is the amount of features or landmarks (e.g. points, lines,
etc) which are contained in the generated map. That is why we have based our
quality measure on the feature having same shapes. We have not used the texture
and color information because the maps are only binary images.

A very subtle issue is with the finding of the quality of the maps when they are
the subset of a larger map. The ground truth is assumed to be the superset of all
the maps so it contains all the features and information. So to assess the quality
of the map which is smaller than the ground truth, we have to identify the subset
from ground truth for which the map was generated. This remains an issue with this
algorithm although for maps which are equivalent to the ground truth the algorithm
gives fairly accurate results.

Only other remaining issue is the utilization of the threshold. Utilization of
threshold can be a problem because we will not be able to match features if the
maps are not aligned as in the case of Harris and Hough transform but this is not the
case for SIFT based detector because it can detect matches even if they are far away,
independent of scale, rotation and dislocation. Although for the Harris and Hough
alignment of the map remains an important point. Alignment can be achieved by a
startup marker that identifies a stable point between the robot generated map and the
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ground truth. A map can be considered more accurate if it consistently shows good
performance in all three measures.

5.7 Limitations

This system is only suitable for offline measurement for the quality of the maps. As
per definition the measure of quality is very difficult to define because requirements
on which the map quality is based can be changed according to the need.

This algorithm measures the quality only on the basis of the information content
of the image. These maps only contain bi-level images without any additional in-
formation. Map distortions and noise are not considered because the information is
intact even with the added noise.

Some of the limitations which are observed are due to the type of maps used
for processing. If the map has noise, such as, a jagged line or map with distortions,
most likely the Harris corner detector will find lots of corners which could give
erroneous results. Also Hough transform will fail for the case when point cloud data
is separated quit far apart. Similarly for the SIFT case, if there is too much noise in
the maps, this will introduce additional features which can cause problems during
comparison of the features, because closely related features will give similar results.

6 Conclusion

Motivated by the absence of how one would evaluate robot-generated maps in a
quantitative sense, our efforts have focused on bringing together the research com-
munity to collectively address this problem. This Chapter discussed our recent ef-
forts in addressing this problem based on a recursive developmental cycle that en-
compasses standard test methods and objective evaluation methodologies.

Based on our previous work on performance singularity identification and test-
ing, three test scenarios were developed by accounting for environmental conditions
that robots typically encounter in unstructured domains. These scenarios considered
the cases where there were distinct features readily available for reliable correspon-
dence determination, occluded features that provided a considerable degree of dif-
ficulty, and a pathological case where establishing correspondences was extremely
difficult. By varying the degree of difficulty, one is able to evaluate and analyze the
robustness of mapping approaches.

Theoretical measures were developed using the Cramer-Rao Bound to arrive at
a lower bound accuracy to compare experimental results. It was shown how the
CRB bounds can be useful for assessing localization, pose tracking, and mapping
estimates. Force Field Simulation was proposed as a methodology for assessing
consistency of maps. By using the concept of Virtual Scans within the iterative FFS
algorithm and experimental data, it was demonstrated how to evaluate the consis-
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tency of map quality at a local (metric) level. Three measures were then proposed
to quantitatively asses global (metric) map quality using features extracted by three
different detectors namely, the Harris corner detector, the hough transform and the
scale invariant feature transform with respect to a ground truth map.

Our continuing research efforts will focus on how we can better refine the test
methods and improve the map evaluation process. By working closely with the re-
search community to develop standardized tools via standard test methods and ref-
erence data sets, researchers and consumers alike will be able to better evaluate the
cost and benefits associated with robotic mapping technologies based on the end-
user constraints.
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